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Capillary instabilities in thin nematic liquid crystalline fibers
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A complete identification and characterization of three distinct capillary instabilities in nematic liquid crystal
fibers is presented. Linear stability analysis of capillary instabilities in thin nematic liquid crystalline cylindri-
cal fibers is performed by formulating and solving the governing nematocapillary equations. A representative
axial nematic orientation texture is studied. The surface disturbance is expressed in normal modes, which
include the azimuthal wavenumberm to take into account nonaxisymmetric modes of the disturbance. Capil-
lary instabilities in nematic fibers reflect the anisotropic nature of liquid crystals, such as the orientation
contribution to the surface elasticity and surface bending stresses. Surface gradients of bending stresses provide
additional anisotropic contributions to the capillary pressure that may renormalize the classical displacement
and curvature forces that exist in any fluid fiber. The exact nature~stabilizing and destabilizing! and magnitude
of the renormalization of the displacement and curvature forces depend on the nematic orientation and the
anisotropic contribution to the surface energy, and accordingly capillary instabilities may be axisymmetric or
nonaxisymmetric, with finite or unbounded wavelengths. Thus, the classical fiber-to-droplet transformation is
one of several possible instability pathways while others include surface fibrillation.
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I. INTRODUCTION

The current wide use of thin fibers, films and multipha
material systems demands a fundamental understandin
capillary hydrodynamics, interfacial thermodynamics, a
interfacial transport phenomena@1–3#. Many new liquid
crystal applications involving strong interfacial effects su
as mesophase fiber spinning@4# and formation ofin situ
liquid crystal polymer composites@5# also require a funda
mental understanding of capillary hydrodynamics. Despit
good understanding of interfacial liquid crystal thermod
namics@6–14#, nonequilibrium surface phenomena are n
well understood and/or characterized. Force balance e
tions describing static@15–20# and dynamical interfacia
phenomena@17,20# are available but have not been wide
used in describing the mechanics of fiber and film mic
structures. This paper is concerned with the mechanics
stability of thin nematic liquid crystalline fibers.

A question of fundamental importance in capillary ins
bilities of thin fibers is the nature of the modes that arise
driven by surface tension forces. In isotropic fluid fibers,
fiber-to-droplet transformation is well understood and kno
as the fiber Rayleigh instability@1,2,21#. In this case, dis-
placement capillary forces drive the fiber break-up, wh
curvature dependent forces resist the instability. Since
these materials surface tension is isotropic, only axisymm
ric mode emerges, eventually generating spherical drop
On the other hand, an essential characteristic of nematic
uid crystals is mechanical anisotropy@22#. The anisotropies
in the viscoelastic bulk properties of nematic liquid crys
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are well understood theoretically@23,24# and experimentally
@22#, and the anisotropies in the surface elastic propertie
nematics are also well-characterized@7,9#. It is well-known
that the surface tension of nematics contains an isotro
contribution as well as an anisotropic contribution, known
the anchoring energy@7,9,22#. The role of anchoring energy
on capillary instabilities has been partially studied@5,25#
with simplified versions of the governing interfacial line
momentum balance equations. The study of capillary ins
bilities is based on analysis of macroscopic flow produced
gradients in capillary pressure@1,25#. The capillary pressure
is found by projecting the surface gradient of the surfa
stress tensor along the unit surface normal vector. Thus,
nature of surface stress tensor is at the center of capil
instabilities. For isotropic fluids, the surface stress tensor
diagonal 232 tensor, the capillary pressure is isotropic, a
nonaxisymmetric modes on thin cylindrical fibers are th
stable because curvature dampens such costly deform
@2# ~isotropic jets, on the other hand, may develop nona
symmetric disturbances but only through inertia effects@26–
28#!. For nematic liquid crystals, the surface stress tensor
233 tensor, exhibiting bothnormal and bendingstresses.
Bending stresses arise because the surface energy depen
the nematic orientation at the surface. The bending stre
attempt to deform the surface if the surface energy can
lowered in doing so. In this paper, we show that gradients
bending stresses renormalize the capillary pressure effe
creating new axisymmetric and nonaxisymmetric capilla
instabilities. The specific objectives of this paper are to~1!
derive a general equation that describes capillary instabili
in thin nematic liquid crystal fibers,~2! characterize all the
possible capillary instability modes and elucidate the phy
cal mechanisms that drive and quench the instabilities,~3!
©2001 The American Physical Society01-1
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CHEONG, REY, AND MATHER PHYSICAL REVIEW E64 041701
characterize the fundamental role of anisotropic surface e
ticity and bending stresses in capillary instabilities, and~4!
establish parametric conditions that lead to axisymmetric
nonaxisymmetric capillary instabilities.

The organization of this paper is as follows. In Sec. II, w
present the governing nematocapillary equations and de
the instability criteria for a representative nematic texture
Sec. III, we characterize all possible instability modes a
the geometry of the evolving unstable fiber. The instabi
mechanisms are clearly identified and discussed in term
capillary forces. All results are summarized in compact ta
lar form and discussed in detail, emphasizing the physica
well as mathematical aspects. Representative computed
alizations of unstable fibers are included to complement
tabulated and graphical information. Section IV prese
conclusions.

II. GOVERNING EQUATIONS

A. Geometry and texture of nematic liquid crystal fibers

To completely define the state of a nematic liquid cryst
line fiber, both the geometry of the fiber and the spatial o
entational order of the nematic liquid crystal must be spe
fied. More specifically, nematic liquid crystalline fibe
[$n,R,N%, wheren is the nematic director field@22#, R is
the fiber radius, andN is the unit surface normal vector. Fo
an isotropic material fiber, only the geometry is necess
i.e., $R,N%.

Figure 1 shows definitions of the fiber geometry and ne
atic texture. Figure 1~a! shows that the fiber is initially a
uniform cylinder with radiusa, and the fiber axis is collinea
with the z axis of a cylindrical coordinate system. The fib
nematic texture is expressed by the director field using
vectorsir , iu , and iz in the direction of ther, u, andz axes,
respectively. In this paper, we restrict our analysis to a ne

FIG. 1. ~a! Unperturbed fiber with radiusa is aligned in the
z-axis of cylindrical coordinates (r ,u,z). Cross-sectional view in
Cartesian coordinates~x, y! shows the unit vectorsir and iu in
azimuthal angleu. ~b! Unit surface normal vectorN and director
field n(nz51) of the axial nematic fiber with surface disturbance
Fiber radiusR and unit surface normalN change along thez andu
directions. In the cross section, the director fieldn is shown as dots
and the u-directional surface disturbances as small-amplitu
wrinkles at the surface.
04170
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atic texture with a fixed director field, denoted as axial te
ture, and the nematic fiber with the axial texture is call
‘‘axial fiber.’’ Figure 1~b! shows the axial fiber with surfac
disturbances. In the cross-sectional view of Fig. 1~b!, the
director fieldn is shown as dots and theu-directional surface
disturbances as small-amplitude wrinkles at the surface,
though in real the surface noise is too small to be visua
detected. The fiber radiusR and the unit surface normalN
change along thez andu directions. In the axial texture, th
director is oriented along the fiber axis and it is given by

n5 iz . ~1!

The fiber shape at any timet and positionz andu is given by

R~z,u,t !5a1j~z,u,t !. ~2!

The surface disturbancej is expressed in a harmonic serie

j~z,u,t !5( j0eat1 i ~kz1mu!, ~3!

where j0 is the initial amplitude of the disturbance,a the
growth rate for real and positive values,k the axial wave
number, andm the azimuthal wave number. The wave vect
~k, m! is composed of two wave numbers. Due to rotation
periodicity, the azimuthal wave numberm is an integer and
specifies the disturbance mode in the azimuthal~u! direction.
Axisymmetric modes correspond tom50, while nonaxisym-
metric modes correspond tomÞ0. During a capillary insta-
bility the fiber geometry evolution is captured by the fibe
radius~R!, the principal radii of curvature (Rru ,Rrz), and its
unit surface normal (N). To discuss capillary instabilities i
is also useful to introduce the following expression for t
mean curvatureH in cylindrical coordinates

H52
1

2
“s•N52

1

2
S 1

Rru

1
1

Rrz
D

5
21

2AS 11
R,u

2

R2 1R,z
2 D 3

F 1

R
S 11

2R,u
2

R2 1R,z
2 D

2~11R,z
2 !

R,uu

R2 2S 11
R,u

2

R2 D R,zz1
2

R2 R,uR,zR,uzG ,

~4!

where“s is the surface gradient operator,R,u5]R/]u, R,z
5]R/]z, R,uu5]2R/]u2, R,zz5]2R/]z2, and R,uz
5]2R/(]u]z). A linearized expression forH is given below
@see Eq.~24!#.

B. Linear bulk and surface momentum balance equations

We consider the stability of a thin, initially axisymmetric
cylindrical nematic fiber surrounded by an inviscid matr
The nematic liquid crystal is assumed to be incompressi
and its orientation is homogeneous and constant. Linear

.
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CAPILLARY INSTABILITIES IN THIN NEMATI C . . . PHYSICAL REVIEW E 64 041701
bility analysis is used to analyze the complete set of axisy
metric and nonaxisymmetric capillary instabilities in nema
liquid crystal fibers. Since the director is fixed, only the s
face and bulk linear momentum balance equations define
evolution of the fiber’s shape. In this work, the mechani
response of the nematic fluid is that of an anisotropic v
coelastic material@10,22#, where the bulk is viscous and th
surface is elastic.

The bulk linear momentum balance equation for this s
tem is given by

r
]v

]t
5“•t, ~5!

wherer is the density,v the velocity vector, andt the total
stress tensor. Inertia is neglected. The total stress tensot is
defined as

t52pI1tv, ~6!

wherep is the pressure,I the unit tensor, andtv the viscous
stress tensor. Although nematic liquid crystals have b
Frank elasticity due to orientation gradients, in this paper
elastic stresses arise becausen is held constant. Thus, th
viscous stress tensortv is expressed by Ericksen’s tran
versely isotropic fluid~TIF! constitutive equation@24#

tv52h2A1h3A:nnnn12~h12h2!~A•nn1nn•A!,
~7!

whereh1 , h2 , andh3 are viscosity coefficients, andA is the
rate of deformation tensor given by

A5
1

2
@“v1~“v!T#, ~8!

where the superscript ‘‘T’’ denotes the transpose. Whenh1
5h2 andh350, the constitutive equation for Newtonian flu
ids is recovered. The TIF equation thus describes an an
tropic viscous material, whose viscosity depends on the
rector orientation. The continuity equation for this system
written as

]vz

]z
1

1

r

]~rv r !

]r
50. ~9!

In addition to thebulk linear momentum balance equ
tion, the presence of an evolving free surface involves
action of surface forces, and thus thesurfacelinear momen-
tum balance equation enters the description. The surface
ear momentum balance equation is given by@1,16#

N•t5“s•tSE, ~10!

where tSE is the surface elastic stress tensor. On the ri
hand side of Eq.~10!, the surface viscous stresses are igno
since they are insignificant in relation to the surface ela
stresses. The shape of the evolving fiber depends only on
normal component of the surface linear momentum bala
equation, and thus the shape equation is
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N•t•N5~“s"t
SE!•N. ~11!

To make further progress, an expression for the surface e
tic stress tensortSE is required. Since nematic liquid crysta
are anisotropic viscoelastic materials, anisotropy is an es
tial feature oftSE. Moreover, surface elastic stresses are
fined by constrained variations of the surface energy, wh
we now discuss.

The simplest expression for the surface free energy of
nematic liquid crystal is given by the Rapini-Papoular co
stitutive equation@16,22#

g5g is1
gan

2
~n•N!25g isF11

t

2
~n•N!2G , ~12!

whereg is is the isotropic surface tension,gan the anchoring
energy due to the nematic orientation at the surface, ant
5gan/g is the ratio of the anchoring energy to isotropic su
face tension. Since the surface free energy and the isotr
surface tension are always positive,t is restricted to a value
greater than22. If t50, the surface anisotropy vanishes. F
t.0, the surface ‘‘easy axis,’’ that which minimizes the su
face free energy, is parallel to the surface~planar anchoring!
and perpendicular to the surface normal vector. Fort,0, the
surface easy axis is perpendicular to the surface~homeotro-
pic anchoring! and parallel to the surface normal vector. E
tensions of the Rapini-Papoular constitutive equation
used in the literature, specifically to describe thermally
duced surface orientation transitions@13#, but these therma
effects are beyond the scope of this paper.

The expression for the surface elastic stress tensortSE is
obtained by considering the energetic penalty of constrai
variations ing and is given by the sum of the normal~ten-
sion! tN

SE and the bendingtB
SE contributions@29#

tN
SE5gI s ,tB

SE52I s•S ]g

]N
ND . ~13!

Parametrizing the interface with orthonormal unit surfa
base vectors (i1 ,i2), the normal and bending surface elas
stresses become

tN
SE5Fg is1

gan

2
~n•N!2G~ i1i11 i2i2!, ~14a!

tB
SE5B13

NIi1N1B23
N1i2N, ~14b!

where the superscript ‘‘NI’’ denotes the interface betwee
the nematic liquid crystal~N! and isotropic fluid (I ), which
is inviscid in this study, and where the bending coefficie
$B13

NI ,B23
NI% are given by

B13
NI52gan~n•N!~n• i1!, B23

NI52gan~n•N!~n• i2!.
~15!

The bending coefficients are proportional to the anchor
energy and to the director’s projections along the unit norm
and along the surface base vectors. The largest magnitud
the bending coefficients, for givengan, arise atp/4 angles
1-3
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CHEONG, REY, AND MATHER PHYSICAL REVIEW E64 041701
from the interface, and they vanish at the planar and hom
tropic orientations. In matrix form, the 233 surface elastic
stress tensortSE is

tSE5Fg 0 B13
NI

0 g B23
NIG . ~16!

Clearly the surface stress tensor is asymmetric. Moreo
such bending stresses are intrinsic to nematic interfaces
result in forces normal to the interface, even in the abse
of curvature, for a director field not parallel or perpendicu
to the interface. The bending stresses play a crucial rol
the capillary instability of nematic fibers. Isotropic surfa
tension leads to axisymmetric capillary instabilities, but a
isotropic surface tension leads, through the generation
bending stresses, to nonaxisymmetric modes. The reaso
hind this statement is that forces normal to the interface
pend on surface orientation and exist even in the absenc
curvature@20,29#.
Using the expression for the surface elastic stress tensortSE,
we find the following expression for the interfacial forcef
@29#:

f5“s•tSE5“s•tN
SE1“s•tB

SE5H F S ]g

]nD •~“sn!TG "I s

1~2Hg!NJ 1H F22HS ]g

]N
"NDÀ¹s•S ]g

]ND GNJ ,

~17!

where the first term in curly brackets is the normal str
contribution and the second term in curly brackets is
bending stress contribution. Equation~17! shows that surface
gradients in the normal~tension! surface stresstN

SE give rise
to tangential~perpendicular toN! and normal forces~parallel
to N!, while surface gradients of bending stresstB

SE give rise
only to normal forces. It is shown in Eq.~17! that normal
forces from surface gradients of bending stress persist e
in the absence of curvature (H50). Meanwhile, tangentia
forces have been shown to drive Marangoni nematic flo
@29#.

The normal component of Eq.~17! is known as the gen
eralized Laplace equation@1#

2N•~ tI2tN!•N5~“s•tSE!•N52pg , ~18!

where the superscript ‘‘I’’ and ‘‘ N’’ denote the isotropic and
nematic fluids, respectively, andpg is the magnitude of the
interfacial normal force originating from the surface gra
ents of the normal and bending stresses, called as the c
lary pressure, and according to Eq.~17! it is given by

2pg52Hg22HS ]g

]N
•ND2“s•S ]g

]ND . ~19!

Thus, the normal and bending stress contributions to the
illary forces are

pgunormal stresses522Hg, ~20!
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pgubending stresses52HS ]g

]N
"ND1“s•S ]g

]ND . ~21!

Thus, the anchoring energygan contributes to the capillary
pressure through both thenormalandbendingstresses. Nev-
ertheless, when considering the linear regime of capill
instability of a nematic liquid crystal fiber, second ord
terms involvingH(n•N)2 cancel out and the only remainin
anisotropic contribution to the capillary pressure is that fro
the bending stresses. Thus, any model that attempts to
ture the linear regime of capillary instability in a nemat
liquid crystal fiber must include all contributions arisin
from the bending stress tensor.

C. Simplifying assumptions

The assumptions made to describe the linear regime of
capillary instability in incompressible, isothermal nematic
bers are as follows.

~a! For sufficiently thin fibers, the surface elastic energy
insignificant with respect to the bulk Frank elasticity@22#;
the director field does not change even if the fiber sh
evolves through the linear instability process.

~b! In the long wavelength approximation, the waveleng
of a dominant surface disturbance is assumed to be m
longer than the fiber radius, and the axial velocity is cons
erably larger than the other velocity components. In
present case, an order of magnitude calculation obtained
ing the continuity equation yieldsvz@v r ,vu @2#. Thus, only
the axial velocityvz is significant.

~c! In the absence of surrounding matrix effects and in
long wavelength approximation, the radial dependence
axial velocity is ignored so that the axial velocity is consi
ered as a function only of the axial coordinate and tim
vz(z,t) @2#.

~d! The analysis is restricted to the linear regime of t
capillary instability. This restriction is obeyed whenj/a
!1.

In the next section, we develop the governing equatio
for the capillary instabilities of nematic fibers when the d
rector is aligned along the fiber axis (nz51).

D. Governing equations for an axial nematic fiber

In this section, the governing equation of the surface d
turbancej(z,u,t), Eq. ~3!, is derived for the axial fiber by
combining the linear momentum balance equation, Eq.~5!,
and the normal stress boundary condition Eq.~18!.

During nonaxisymmetric capillary instability, the princ
pal radii of the curvature (Rru ,Rrz) and the unit surface nor
mal vector N are obtained in the linear regime using th
assumptions in Sec. II C and given by

1

Rru
5

1

R
2

1

R2 S ]2R

]u2 D ,
1

Rrz
52

]2R

]z2 , ~22!

N5 ir2
1

R

]R

]u
iu2

]R

]z
iz . ~23!
1-4
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Note that the radii of curvature areu dependent:Rru
5Rru(z,u,t), Rrz5Rrz(z,u,t). Thus, the mean curvatureH
in Eq. ~4! is expressed as@21#

H52
1

2 S 1

Rru
1

1

Rrz
D52

1

2 F 1

R
2

1

R2 S ]2R

]u2 D2
]2R

]z2 G .
~24!

Under the assumed kinematical conditions, the only n
zero component ofA is

Azz5
]vz

]z
. ~25!

The viscous stress tensor, obtained by substituting Eqs~1!
and ~25! into Eq. ~7!, is

tzz
v 52h

]vz

]z
, ~26!

whereh5h21h3/212(h12h2). Substituting Eq.~26! into
Eq. ~6!, the total stress tensor becomes

tzz52p12h
]vz

]z
. ~27!

Using Eqs.~23! and ~24! in Eq. ~19!, the capillary pressure
pg becomes

pg5
g is

a
2

g is

a2 j2g isS ]2j

]z2 1
1

a2

]2j

]u2D2g ist
]2j

]z2 , ~28!

which properly reduces to the Newtonian capillary press
when t50, i.e., when surface tension is isotropic. Impo
tantly, when the bending stress contributes to the capil
pressure of an axial fiber, a forcepgub f appears that is given
by

pgub f52g ist
]2j

]z2 , ~29!

which can compete or cooperate with the usual isotropic c
tribution since the sign oft is not fixed. Thus,t in Eq. ~28!
can be positive, negative, or zero.

The pressure in Eq.~27! can be expressed in terms of th
capillary pressure@2#

p52
1

3
~ tzz1tuu1t rr !52

1

3
~ tzz22pg!, ~30!

where the following boundary conditions are applied:t rr
52pg , tuu5t rr , at r 5a.
Substituting Eq.~30! into Eq. ~27!, the total stress tensor i
rewritten as@2#

tzz52pg13h
]vz

]z
. ~31!

Using Eq.~31!, the axial momentum balance equation, E
~5!, is found to be@2#
04170
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r
]vz

]t
52

]pg

]z
13h

]2vz

]z2 . ~32!

By integrating the continuity equation, Eq.~9!, across the
cross section of the fiber, we obtain

]R

]t
1vz

]R

]z
1

R

2

]vz

]z
50, ~33!

where the second term is dropped in the linear regime@2,31#.
Thus, using Eq.~2! the axial velocity can be expressed
terms ofj @2,31#:

]vz

]z
52

2

a

]j

]t
. ~34!

Combining Eqs.~32! and ~34! in conjunction with Eq.~28!
gives the differential equation forj:

]2j

]t22
3h

r

]3j

]z2]t
1

g isa

2r

]2

]z2 F j

a2 1S ]2j

]z2 1
1

a2

]2j

]u2D1t
]2j

]z2G
50. ~35!

By substituting Eq.~3! into Eq.~35!, a quadratic equation fo
the dimensionless growth ratea* 5aAra3/g is, is obtained:

a* 213Oh~ka!2a* 2
~ka!2

2
@12m22~11t!~ka!2#50,

~36!

where ka is the dimensionless wave number and O
5h/Arag is is the Ohnesorge number, or the ratio of t
viscous force to the surface force. From Eq.~36!, the nematic
fibers are unstable when the condition is satisfied:

2a* 523 Oh~ka!2

1A@3Oh~ka!2#212~ka!2@12m22~11t!~ka!2#

.0. ~37!

The maximum growth rateamax* and the corresponding wav
numberkamax, obtained by solving Eq.~36!, are

amax* 5S 2&A ~11t!

~12m2!21
6Oh

~12m2!
D 21

, ~38!

kamax5SA2~11t!

~12m2!
13&OhA ~11t!

~12m2!2D 21

, ~39!

which reduce to the results for Newtonian fluids if the v
coelastic anisotropy and the nonaxisymmetric depende
vanish; i.e.,h15h2 , h350, t50, andm50: for the highly
viscous fiber,amax* 51/(6Oh) andkamax51/A3&Oh; for the
inviscid fiber, amax* 51/2& and kamax51/&. In particular,
when only axisymmetric disturbances become unstable,
m50, the results from Eqs.~38! and ~39! predict the axial
fiber breakup into droplets with a characteristic size
2p/kamax @25#.
1-5
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The physics of capillary instabilities in axial nematic
bers can be elucidated by rewriting Eq.~28! as

pg5
g is

a
2

g is

a2 j2g isS ]2j

]z2 1
1

a2

]2j

]u2D2g ist
]2j

]z2 5
g is

a
1 f d

1 f c , ~40!

f d52
1

a2 Cjj, f c52
1

a2 Cjuu
juu2Cjzz

jzz,

Cj5Cjuu
5g is , Cjzz

5g is~11t!. ~41!

The capillary pressure contains two~j-dependent! deforma-
tion effects: a displacement forcef d and a curvature force
f c . Capillary instabilities occur because a spatially perio
pressure gradient develops, inducing macroscopic flow.
driving force for creating a pressure gradient is denoted a
destabilizing force, while a force resisting it is denoted a
stabilizing force. The nature of the two capillary forces d
pends only on the sign of their coefficientsCj , Cuu , and
Cjzz

, which are the effective surface tensions for both forc
Thus the displacement force is destabilizing~stabilizing! for
Cj.0 (Cj,0), while the curvature force is stabilizing~de-
stabilizing! for Cuu.0 andCjzz

.0 ~Cuu,0 andCjzz
,0!.

In isotropic fibers (t50), the displacement force is alway
destabilizing and the curvature force is always stabilizi
thus explaining the existence of lower cutoff in the instabil
wavelength, as in the classical Rayleigh fiber instability~see
Fig. 3 and discussion below!. This occurs because the stab
lizing curvature force for sufficiently short wavelength
overpowers the driving displacement force. Since for ax
fibersCj.0, the displacement force is always destabilizin
On the other hand, sincet>22, the curvature force fromjzz
can be destabilizing ift,21 becauseCjzz

,0 or stabilizing

if t.21 becauseCjzz
.0, although the curvature force from

juu is always stabilizing. Thus, when the curvature for
from jzz is destabilizing (t,21), a lower cutoff wave-
length does not exist and the instability must be of the H
amard type~see Fig. 2 and discussion below!. Sincet is the
bending force coefficient@see Eq. ~29!#, the described
phenomenology of capillary instabilities in axial fibers
ch
th

I
un
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attributed to anisotropic effects arising from surface gra
ents of bending stresses.

III. RESULTS AND DISCUSSION

The characterization of capillary instabilities in nema
fibers requires the specification of two features:~i! Instability
mechanism and~ii ! Symmetry of deformation modes. Thes
two features are embedded in Eq.~37! and must be consid
ered separately.

~i! Instability mechanism. The capillary instabilities i
nematic liquid crystalline fibers are found to follow two di
ferent routes: Modified Rayleigh and catastrophic instabi
mechanisms.

~a! Modified Rayleigh~MR! instability mechanism. The
modified Rayleigh instability is characterized by a singlem
50 mode. Settingm50 in Eqs.~37!–~39!, we find that the
nematic fibers are MR unstable whenever

FIG. 2. Instability phase diagram in terms of the displacem
force coefficientCj and the curvature force coefficientsCjuu

and
Cjzz

. Roman numerals~I, II ! refer to the two regions of Table I, an
the captions~MR/A, C/A, C/NA! to the instability types of Table I.
On the axes St and D denote stabilizing and destabilizing, res
tively.
2a* ~m50!523Oh~ka!21A@3Oh~ka!2#212~ka!2@12~11t!~ka!2#.0,
~42!

amax* ~m50!5~2&A~11t!16Oh!21.0, 0,kamax~m50!5~A2~11t!13&OhA~11t!!21,kacutoff ,
-

s

wherekacutoff is an upper cutoff wave number above whi
disturbances do not grow. The axial fibers have no azimu
dependence and thus axisymmetric.

~b! Catastrophic simultaneous instability mechanism.
the catastrophic simultaneous instability mechanism,
al

n
-

stable modes follow the classical short wave~small wave-
length! instability @30#, which is characterized by simulta
neous occurrence of all azimuthal modesm with unbounded
growth rate. Using Eq.~37!, we find that the nematic fiber
are catastrophic unstable whenever
1-6
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2a* 523Oh~ka!21A@3Oh~ka!2#212~ka!2@12m22~11t!~ka!2# .0,
da*

d~ka!
.0, ~43!
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where ka.0 for a catastrophic instability without uppe
kacutoff . Under this instability mechanism, the following o
dering in growth rates is found:

a* 0.a* 1.¯.a* n.a* n11.¯ , ~44!

wherea* (mn)[a* n while mn representsm5n mode here-
after.

~ii ! Symmetry of deformation modes. The symmetry
the deformation in this paper is restricted to axisymme
and nonaxisymmetric modes, axisymmetric modes being
tationally invariant. It is noted that for axial fibers the mo
m50 is, as usual, an axisymmetric mode.

Based on this general discussion, the criteria require
classify the capillary instability are given by specification
instability mechanism/symmetry. The following three cas
emerge:~a! Modified Rayleigh/axisymmetric~MR/A!, ~b!
catastrophic/axisymmetric ~C/A!, ~c! catastrophic/
nonaxisymmetric~C/NA!. In what follows we discuss thes
three different capillary instabilities in axial fibers, and d
termine the parametric dependence of the deformation
growth rates.

A. Capillary instabilities in axial fibers

Table I summarizes the complete phenomenology of
three capillary instabilities in axial fibers, as computed fro
Eqs. ~42!, ~43!. There are three regimes according to t
values oft. The first column shows the instability type, an
the entries show characteristic growth rate curves for e
instability mechanism. For the MR instability in the seco
column, the growth rate curve is bounded, and an up
kacutoff exists. For the catastrophic instabilities of all mod
in the fourth column, the growth rate curves are unbound
and lower modes grow faster than higher modes. We n
discuss in detail the physical and mathematical aspects o
tabulated information.

1. Instability characterization in axial fibers

As explained above the physics of capillary instabilities
axial fibers, as summarized in Table I, is elucidated by c
sidering the sign of the displacement and curvature fo
coefficients or effective surface tensions@see Eqs.~41c!,
~41d!#. Figure 2 presents an instability phase diagr
spanned by the displacement force coefficientCj , and the
curvature force coefficientsCjuu

and Cjzz
. The roman nu-

merals ~I, II ! refer to the two regions of Table I, and th
captions~MR/A, C/A, C/NA! to the instability types of Table
I. The figure captures the nature of the driving forces a
identifies when and why an instability occurs. For the ax
fiber, sinceCj(Cjuu) is always positive and thus destabili
ing ~stabilizing!, the sign of Cjzz

determines instability
mechanisms: The first quadrant corresponds to instabil
04170
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with an upperkacutoff since the curvature forces are stabili
ing; in the fourth quadrant, curvature fromjzz destabilizes
and catastrophic instabilities occur; the second and th
quadrants are thermodynamically inaccessible sinceCj and
Cjuu

are always positive. By crossing the boundary betwe

the first and fourth quadrants (t521), the fiber under MR
instability in region I becomes susceptible to catastrop
instability for modem50. And then, in region II the fiber is
catastrophic, unstable for modesm>1 as well asm50. Fig-
ure 3 shows a representative schematic of the displacem
( f d) and curvature (f c,jzz

, f c,juu

m0 , f c,juu

m ) forces as a function of

the dimensionless anchoring energyt, wheref c,jzz
represents

the curvature forces fromjzz, f c,juu

m0 the curvature force from

juu for m50 mode, andf c,juu

m for m>1 modes. The figure

again provides the reasons of the existence of the two reg
~I and II!, and observation of the sign and relative mag
tudes of the stabilizing and destabilizing forces explains
phenomenology of Table I. In short, the displacement for
( f d) are always destabilizing, while the curvature forc
from juu ( f c,juu

m0 , f c,juu

m ) always stabilizing, showing the

smaller curvature force form50 than form>1. Meanwhile,
the curvature forces fromjzz( f c,jzz

) are stabilizing only for

t.21. In Fig. 3, the stabilizing forces for the nonaxisym
metric modes (f c,juu

m ) are sufficiently strong to quench th

instability if t.21, and thus onlym50 is unstable. In other
words, it is energetically costly to cause instability mod
m>1 for t.21 as seen by comparing the magnitude
stabilizing forces with that of destabilizing forces. Fort5
21, since the destabilizingf d cannot overcome the stabiliz

TABLE I. Capillary instabilities in axial fibers. MR/A: Modified
Rayleigh/axisymmetric instability. C/A: Catastrophic/axisymmet
instability. C/NA: Catastrophic/nonaxisymmetric instability.a* i :
Growth rate ofi th mode for catastrophic instabilities.
1-7
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ing f c,juu

m and f c,jzz
is no longer stabilizing, onlym50 un-

dergoes catastrophic instability. The figure also shows
for isotropic fibers (t50) the curvature forcesf c,juu

iso and

f c,jzz

iso are always stabilizing while the displacement forcef d
iso

is always destabilizing, and thus the upperkacutoff exists
since the magnitude of the destabilizing force is relativ
greater than that of the total stabilizing curvature forces.

The nature of nonaxisymmetric instabilities is explain
as follows. For the cylindrical axial fiber, the surface orie
tation of the nematic texture is planar anchoring. Since
t.0 the easy axis of the surface is planar anchoring,
misalignment between the surface orientation and the e
axis is not high enough to cause the nonaxisymmetric in
bility by bending stresses. On the other hand, fort,0 the
misalignment between the actual director and the easy
~homeotropic! is large, and if the anchoring energy~t! is
strong enough~large negative value!, the bending stresse
may even cause nonaxisymmetric deformation in order
relieve the high misalignment and align the director with t
easy axis by means of surface deformations and rotati
These observations on the symmetry of the unstable mo
can be made quantitative, as follows. When the growth
a* is real and positive, the surface disturbances become
stable and grow with time. In the Newtonian fiber (t50) the
positive reala* is obtained only for the axisymmetric dis
turbances (m50), from Eq. ~37!. For the axial fiber, by
solving Eq.~37! positive reala* solutions are obtained whe
the following condition is satisfied:

FIG. 3. Representative schematic of the displacement (f d) and
curvature (f c,jzz

, f c,juu

m0 , f c,juu

m ) forces as a function of the dimension
less anchoring energyt, wheref c,jzz

represents the curvature force
from jzz, f c,juu

m0 the curvature force fromjuu for m50 mode, and

f c,juu

m for m>1 modes. In the figure,f d
iso represents the displace

ment force, andf c,juu

iso and f c,jzz

iso the curvature forces for isotropi
fibers. The figure provides the reasons of the existence of the
regions~I and II!, and observation of the relative magnitudes of t
stabilizing and destabilizing forces explains the phenomenolog
Table I.
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12m22~11t!~ka!2.0. ~45!

For isotropic fibers,t50 and inequality Eq.~45! is never
fulfilled for m>1, but for nematic fibers it can be. Inequali
Eq. ~45! is satisfied whent,21, where the following con-
dition is also satisfied:

0,
12m2

11t
,~ka!2. ~46!

In other words, when the magnitude of the stabilizing curv
ture forcef c,jzz

is sufficiently reduced by bending forces, an

eventuallyf c,jzz
becomes destabilizing because the effect

surface tension is negative, nonaxisymmetric modes em
under catastrophic Hadamard instabilities. Since curva
from jzz is destabilizing, there is no upper cutoff but low
cutoff wave number form>2 from Eq.~46!.

For axial fibers we then have two instability regions.
~a! MR/A: t,21, region I. This case corresponds to t

second column of Table I. Whent.21 only the modified
Rayleigh instability with a single unstablem0 mode is
present. The mode is axisymmetric. In this case, the effec
surface tensions are positive and the instability follows
classical Rayleigh mode.

~b! C/NA and C/A: 22<t,21, region II. This case
corresponds to the fourth column of Table I. There are t
possible instabilities: C/NA and C/A. The catastrophic ins
bility mechanism controls the fiber: All modes are unstab
and the short wave instability is dominant. The lower mod
grow faster than the higher modes at constantt, which
means lower mode disturbances with short wavelengths
more likely to cause the fiber instability. In this regime d
stabilizing forces dominate, and the negative effective s
face tension of curvature forcef c,jzz

allows for surface fibril-
lation.

~c! Criticality: t521. The third column in Table I shows
that whent521 there is a critical state involving C/A in
stability. In the limit t5211 the growth rate of the MR/A
instability becomes maximized. On the other hand, in
limit t5212 the C/A and C/NA instabilities shrink to the
only C/A instability with a smaller slope of growth rate
Thus, decreasingt through the value of21 denotes the ex-
tinction of the bounded MR instability, and the birth of th
unbounded catastrophic instabilities.

2. Symmetry of deformation modes in axial fibers

In this study, surface disturbances are classified by
modem in the azimuthal direction given in Eq.~3!. Because
m is an integer, positive and negative signs are equally p
sible for each value ofm. In axial fibers, the sign selects th
handedness of the shape deformation but does not affec
growth rate curves due to them2 dependence of the growt
rate in Eq.~37!. A positive sign imprints a left-handed rota
tion to the surface pattern and thus these are chiral mo
The modem0 , which is a so-called varicose mode, repr
sents the well-known axisymmetric disturbance. Likewi
the m1 mode is called the sinuous mode, and modes w
m>2, fluted modes. Under the modem1 instability, the cen-

o

of
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ter of the fiber moves along a spiral trajectory around thz
axis. Form>2, the cross-sectional shape has a regular
tern identified bym axes of rotational symmetry, and th
shape rotates along thez axis. The axial rotation of the an
isotropic cross-sectional shape form>2, produces twisted
ridged microstructures.

It is noted that while values Oh.0 change the maximum
growth rate and the corresponding wave number, they h
no effect on the surface deformation pattern. For the class
m0 mode,l52p/(ka) is the dimensionless wavelength
the varicose shape in thez direction. The fiber cross sectio
is always circular but periodically expands and contra
when traversing the axial fiber direction. Thus, for them0
mode the formation of droplets with a characteristic sizel is
predicted.

3. Parametric effects on capillary instabilities in axial fibers

Figure 4 shows the azimuthal wavenumberm as a func-
tion of the dimensionless surface anchoring energyt. At t
521, the figure shows the transition of instability mech
nisms from MR to catastrophic type. Only the MR modem0
persists fort.21 because the stabilizing curvature forc
f c,juu

m for modesm>1 are sufficiently strong, while ift

FIG. 4. Azimuthal wave numberm as a function of the dimen
sionless anchoring energyt. At t521, the figure shows the tran
sition of instability mechanisms from MR to catastrophic type. On
the m0 mode is unstable in the whole range oft. The instability
birth curve diverges ast→211, and thus them0 mode undergoes
from MR for t.21 to catastrophic fort<21. Nonaxisymmetric
catastrophic instabilities also emerge whent,21.

FIG. 5. Dimensionless growth rate curvesa* as a function of
dimensionless wavenumberka, for m0 at t520.5,0,2, for~a! Oh
50 and~b! Oh51. This figure corresponds to region I in Table
and the onlym0 mode is MR unstable.
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,21 all catastrophic modes arise simultaneously since c
vature forcesf c,jzz

are destabilizing and thus total destabili
ing forces are greater than total stabilizing forces for
modes~see Fig. 3!. The instability birth curve diverges a
t→211, indicating that in thist521 limit, the m0 mode
becomes catastrophic unstable.

Figure 5 shows the dimensionless growth rate curvesa*
as a function of dimensionless wave numberka, for m0 at
t520.5,0,2, for~a! Oh50 and~b! Oh51. This figure cor-
responds to region I in Table I. According to Eq.~42!, at
three values oft, t520.5, 0, and 2, the only unstable mod
is m0 . It is seen in Fig. 5 that the cutoff wave number, whi
is given askacutoff51/A11t, is not a function of Oh. In
addition to decreasing the maximum growth rate, the eff
of increasing Oh is to shift horizontally the maximum grow
rate to lowerka values, meaning that viscosity increases t
length scales of the unstable mode.

Figure 6~a! shows the maximum growth rateamax* , and
Fig. 6~b! the corresponding maximum dimensionless wa
numberkamax as a function of dimensionless anchoring e
ergy t, for m0 and Oh50,1,10. This figure corresponds t
region I in Table I, and to the MR/A instability. The sup
pressing effect of the viscosity is again evident in both fi
ures. The figure shows that ast increasesamax* and kamax

decrease sharply untilt50, and then they decrease at
much slower rate. The sensitivity of the instability with r
spect tot has already been explained in the previous sec

FIG. 6. ~a! Maximum growth rateamax* and ~b! corresponding
maximum dimensionless wave numberkamax as a function of di-
mensionless anchoring energyt, for m0 and Oh50,1,10. This fig-
ure corresponds to region I in Table I and to the MR/A instabili

FIG. 7. Dimensionless cutoff wave numberkacutoff as a function
of the dimensionless anchoring energyt, for m0 . This figure cor-
responds to region I in Table I, and to the MR/A instability.
1-9
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in terms of the misalignment between the surface orienta
and the easy axis.

Figure 7 shows the dimensionless cutoff wave num
kacutoff as a function of the dimensionless anchoring ener
t, for m0 . This figure corresponds to region I in Table I, a
to the MR/A instability. Thekacutoff decreases witht in the
same pattern askamax in Fig. 6~b!. Similar to the viscous
effect, if t.21, the surface elasticityt tends to stabilize the
fiber, as explained above.

Figure 8 shows the dimensionless growth rate curvesa*
as a function of dimensionless wave numberka, for m0 , and
~a! Oh50,1,10, andt521, and ~b! t522,21.5,21, and
Oh50. Figure 8~a! corresponds to the transition~C/A insta-
bility ! between regions I and II in Table I. According to E
~43!, for t521 the only unstable mode ism0 , and the
growth rate increases with wave numberka without kacutoff ,
signaling that axisymmetric catastrophic instability occu
but increasing Oh suppresses the slope of growth rate
means of the stabilization effect of viscosity. Figure 8~b!
corresponds to the transition and region II in Table I. A
cording to Eq.~43!, ast decreases fromt521, the growth
rate of modem0 increases faster with wave numberka under
the catastrophic instability.

Figure 9 shows the dimensionless growth rate curvesa*
as a function of dimensionless wave numberka, for m0 at
t520.99, 21, and21.01, and~a! Oh50, and~b! Oh51,
dramatically revealing the critical point att521. The
dimensionless anisotropic elasticity values are close
t521 ~transition between regions I and II in Table I!, when
controlled by the MR~t520.99; region I in Table I! and
catastrophic~t521.01; region II in Table I! instability
mechanisms, respectively. The growth rate curves
bounded atkacutoff for t520.99 while the short wave insta
bilities are seen fort521 and21.01. Although, consider-
ing that the MR instability is maximized ast→211 while
the catastrophic instability is minimized ast→212, the
latter is always more unstable in the whole range ofka. The
phenomena mentioned above hold qualitatively for any ra
of viscosity, although the shapes of the growth rate cur
look different in Figs. 9~a! and 9~b! as higher viscosity shifts
amax* and kamax toward significantly smaller values, i.e.,
quantitative effect. When Oh.0, for t521 the growth rate
increases with wavenumber but, after leveling off, it is
most bounded withoutkacutoff @see also Fig. 8~a!#.

FIG. 8. Dimensionless growth rate curvesa* as a function of
dimensionless wave numberka, for m0 , and ~a! Oh50,1,10, and
t521, and~b! t522,21.5,21, and Oh50. ~a! Corresponds to
the transition~C/A instability! between regions I and II, and~b! to
the transition and region II in Table I.
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Figure 10 shows the dimensionless growth rate curvesa*
as a function of dimensionless wave numberka, for m0 to
m5 , when Oh50, for ~a! t521.01 and~b! t522. The
dimensionless anisotropic elasticity range corresponds
catastrophic instability mechanism~region II in Table I!. The
short wave instabilities are seen for all modes, but only
among all catastrophic modes are presented in the fig
clearly showing that lower modes grow faster than high
modes. In Figs. 10~a! and 10~b!, the growth rate curves fo
m0 to m5 show the same pattern fort521.01 ~just below
the criticallyt521! andt522 ~the thermodynamic limit!,
showing that the catastrophic instability fort522 grows
much faster than that fort521.01@see also Fig. 8~b!#. Fur-
ther, it is shown that fort,21 the ‘‘lower’’ kacutoff exist
for the catastrophic modes only whenm>2, as explained in
Eq. ~46!.

Figure 11 shows representative structures that summa
capillary instabilities in axial fibers~see Table I!. Axial fibers
display three types of linear instabilities, whose symme
and existence are controlled by the magnitude and sign of
dimensionless surface anchoring energyt. Large negative
values oft ~region II! ignite catastrophic axisymmetric an
nonaxisymmetric Hadamard instabilities, leading to fibrill
tion phenomena, as the effective surface tension coeffic
Cjzz

for curvature forcesf c,jzz
is negative. Intermediate

FIG. 9. Dimensionless growth rate curvesa* as a function of
dimensionless wave numberka, for m0 at t520.99, 21, and
21.01, and~a! Oh50 and ~b! Oh51, dramatically revealing the
critical point at t521. The dimensionless anisotropic elastici
values are close tot521 ~transition between regions I and II in
Table I!, when controlled by the MR~t520.99; region I in Table
I! and catastrophic~t521.01; region II in Table I! instability
mechanisms, respectively.

FIG. 10. Dimensionless growth rate curvesa* as a function of
dimensionless wavenumberka, for m0 to m5 , when Oh50, for ~a!
t521.01 and~b! t522. The dimensionless anisotropic elastici
range corresponds to catastrophic instability mechanism~region II
in Table I!: t521.01 ~just below the criticality t521! and
t522 ~the thermodynamic limit!.
1-10
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negative values close to zero and positive values oft ~region
I! lead to the axisymmetric Rayleigh instability, and to
eventual fiber break-up into droplets, because destabiliz
displacement forcesf d overcome stabilizing curvature force
f c,jzz

and f c,juu

m0 , but f c,juu

m . At the critical state oft521, the

fiber instability is of catastrophic axisymmetric type. Th
only effect of viscosity is to slow the growth rate and i
crease the wavelength of the unstable modes.

IV. CONCLUSIONS

Capillary instabilities in nematic fibers reflect the anis
tropic nature of liquid crystals. The surface elasticity of ne

FIG. 11. Representative structures that summarize capillary
stabilities in axial fibers~see Table I!. Axial fibers display three
types of linear instabilities, whose symmetry and existence are
trolled by the magnitude and sign of the dimensionless ancho
energyt. Varicose deformations emerge at positive and interme
ate negativet ~region I! and surface fibrillation at large negativet
~region II!.
.
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atics contains orientation contributions that allow for the e
istence of bending stresses. Surface gradients of ben
stresses provide additional anisotropic contributions to
capillary pressure of fibers that renormalize the classical
placement and curvature forces that exist in any fluid fib
The exact nature and magnitude of the renormalization of
displacement and curvature forces depend on the nem
liquid crystal orientation and the anisotropic contribution
the surface energy. If the orientation is along the fiber a
capillary instabilities may be axisymmetric or nonaxisym
metric, and if the anchoring energy strongly promotes n
mal ~homeotropic! orientation to the surface, the usually st
bilizing curvature forces become destabilizing and capilla
instabilities with fibrillation phenomena arise. We are pre
ently pursuing experimental verification of nonaxisymmet
capillary instability using rheological microscopy metho
@32#. The phenomenology predicted in this paper is acc
sible, in principle, by changes in temperature, since the
choring energy of a given interface is temperature depend
@7#. Thus, the classical fiber-to-droplet transformation is o
of several possible instability pathways while others inclu
surface fibrillation.
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